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NOMENCIATURE

a helf the widtn of the container
b the initial height of the liquid
Cp constant pressure spetifiz heat, Btu/lbm°F
Gr Grashof number = gB(TS-TO)aS/v2
g the acceleration of gravity, ft/sec®
hrg latent heat of evaporation or condensation Btu]lbm
k thermal conductivity, Btu/br £t °F
P Dpressure
" Pr Prandti number - y/o
Ra Rayleigh number (GrPr)
(a/A),, heat flux at the walls of the ta-nk per unit aréa, Btix/hr/ft‘2
T teﬁp R ‘
t time, sec
u x-compoﬁent of the velocity, ft/cez
v y-component of the velocity, ft/sec
_U dimensionless x-componenp ;f the;;;locity
V dimensionless y-component of the velocityr
x axial distance, ft
X dimensionless x

"y transverse, or normal distance measured from center line, ft

Y ‘dimensionless y
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o thermal diffusivity, ft°/sec

B coefficient of thermal expansion
p density, lbm/ft3

4 viscesity, lbm/ft/sec

v kinematic viscosity, ft2/sec

¢ dissipation function for two-dimensional incompressible flow is
given by

, 2 v, w\?
s = u@:} "’/\55*5?

T dimensionless time
¢ dimensionless temperature
¥ stream function

N an eigenvalue

Subscriptg
é cold wall

g vapor
- h hot wall
s gaturation or liquid surface
i,J denotes position in the space grid
o denotes initiel conditions

w wall

ngerécrigt

n deﬁotes the time level

vi




ABSTRACT

W2

The two-dimensional, laminar, transient, natural convection heat and
mass transfer in a closed’rectangular container with a fre; surface is
studied. The #—momentum, the y-momentum, and the continuity equations are
coupled to obtain the vorticity transport equation, which is integrated
numerically using the>finite-difference apprpximatiog. The problem of
stability, which isvaésociated with the difference equations, is studied. A
The convergence of the solution of the differ;nce eqﬁatiégs so that of tﬁe
differential eqﬁation is examined. Result; o the calculations for different .

boundary conditions are given. Comparison of the theoretical results with

two experimental measurements from the literature irdicate qualivative

agreement.. . , ’ %

- vii.



I. INTRCDUCTION

This report presents the initial results of a program of research deal-
ing with transient, free convection inside closed containers. The problem
reported is the first phase of a program directed at an understanding and
predibtion of fluid behavior in closed containers subjéct to various dis-
turbances, inciuding those of ambient heat flux, change in wail temperature,
pressurization, change in gravitational field, and liquid discharge. The
objectives of the general prcgram are the prediction‘of transient velocity ‘
profiles, temperature stratification, and pressure histories in such con-
t;iners,

The present report treats laminar transient free convection in a two-
dimghsional container having a liquid-vapor interface. Transient processes
are introduced by a sudden increase in the temperature of the container wall
and by a sudden application of heast flux to the external surfaces of the con-
tainer. For a system at constant pressure and at normal gravity the re_sult-
ing transient flow patterns and tewperature stratiricastion are computed.

The prcoblem is formulated from the complé%e Navier-Stokes equations
coupled with those from *he First law of Therﬁodyngmics and the Conservation
of Masé° Boundary-layer approximations are not made since the geometry and
boundary conditions invalidate‘comblete boundary-layer flow and require asddi-

tional mpmentum)considerations not usually found in boundary-layer calculations.

Reduction of the governing equations is done by numerical procedures using

s
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an IBM 7390 digital ccmputer. ©Opecial attention s given to the problem of
converczence ani stability cf the mmerical sciution,
fombined with the experimental program presenily under way, these re-

suits wiil aid in “he establisnmen:t ¢f critsrig for the onset of <ransition

2iow in tne oontoiner, the start 27 surface iling, and wiil e usefui in

formulating the sciutisn for the case . turbulent convection.

e

»

AR

- 2

o——

1A [ atatacia] - oy

Fo. -



IX. REVIEA4 OF THE LITERATURZ

In the past, ccnsiderable effort has beesn given to the study <f ratural
convecticn heat and mass transfer. Many vroblems have been solved und?r aif-
ferent conditicns of geomstry auld arrangements. These studies have been cf
an analytical as well as an experimentel nature. An extensive survey of lit-
erature showed that tne problex ¢f natural cenveciion in cicsed-ena tubes
with & free surface has not been considered anaiyti-aily, hovever, some prob-
lems with rélate@ geometries have been consicdered. The extrapolation of the
resuits c¢f these studies to other gedmetry can give.misléading resulis owing

to the complicated reture cf itransient free-convection phenomena.

A. ANALYTICAIL STUDIES )

" The case of a veriical element immersed in an infinite fluid initiaily
at rest 1as received the most attention of meny investigators. The time-
steady laminar flow equations were first solved by Poirlll'lausen?5 fer air.
The experimental resulits of Schmidt and Reckman® are in good agreement with
: fe . 20 . ) .
Fohlhausen's ‘solution. Iater, Ostrach  solved tne same problem using mum-
erical methods with high-speed digital computer for different values of
Prandtl number ranging from 0.0% to 10CO.

The: transient free convection from vertical flat plates, with and without

appreciabie thermal capacity and variable fluid properties, has been studied
8,29,30,33,34

by different investigators for different boundary conditions.

: 16 , ,
Ieitzke  corsldered the steady-sbtate na.arel convection bvetween two
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parellel,iinfinite flat plates oriented in the direction of bvody force in
whicih one piate is heated and the other is cooled uniformly. The measured
temperatﬁre distributicn across the filuid is in goocd agreemerc with the the-
ory, L generslization.of the seme problem was carrisd on by Ostrach,go’el in
wnich the plates are maiptained at constent temperatures not necessarily
equal, and the effect of heat sources and frictional neating was included.
As arnticipated, the =ffect of leat sources and viscous heating increases
“he temperatures and the velocities between the plates. The transient free
convection in a duct formed by tw> infinite parallel-plates with arbitrary
time variations in the wall temperature and the héat generation was studied
-by'Zeiberg/and Mueller.37

The two-dimensionz. steady-staté convection in a lorng rectangle, of whichA
the two long sides are vertical boundaries held at differeént temperature
and the two horizcntal bouncaries eitheg insulated or have linear temperature
distributicn, ﬁas ccasidered by Batchelor.1 Hé”did noct soive for the veloc-
ity or témperature d*stribution, but he conéidered the determination of the
rate of heat transfer beiween the two veértical boundaries and the type of
differgnt flow regimes that occur for a given value of Rayleigh's number éhd
aspect ratio. For.Rayleigh‘s numbers leés than 103, Batchelor uses & power
serigs,expansion in terms of Rayleigh‘s number Ra for the dimensionless tem-
perature @ and the stream function. On substiiution of the power series in
the go&erning differentisl equafiqns and equating'coefficients of the like

‘powers of Ra, the prcblem is reduced to the solution of a series of linear

partial differential equations. The Nusselt number, defined as

- .
v

L
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NU = (a/A)u/K(TH-Tc)
is estimated to be of the order
-8 . 2
NU = £/4 +10 Ra ,

where d is the distance between the plates and ! the height of the duct.
For the case of f/d -+ », he argues that for the regions nct near the ends
the temperature and the stream function take their asymptctic values, which

are giveg by the solution of two infinite parallel »plates, one heated and
the cther cocled. For infinite values of Ra, he postulates that there is
an isothermal core having constant vorticity. He found thaf the governing
equetions for the genéral case coulz not be represented by a.polynomial of
small degree nor could they be handled by the Oseen type of linearization.
Poot526 éolved the same problem handled by Batchelor. He obtained a
numerical solutiég based on the use of orthogonal polynomials-for the solu-
tion of the governing differential equations. Following Batchelor, the

stream function and the nondimensional .temperature were assumed to be repre-

sented by the compiete double series of orthogonal functions

00 o0
C = Kﬁ'Anm sin nnx sin my
= o
and
"o e P
¥ o= Z Z anxn(x)ym(.Y) ’ .
n=1 m=1 .
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assumed flow regimes are:

- layer fills the tube. The velocity and temperature profiles are fully de-

where the A and B are constants which were evaluated numericaily. The govern-

ing differential equations were reducec to two ccupled algebraic equations to
be solved simultaneously. Tne functiors X,{x) were chosen to satisfy the
fourth order Sturm-Liouville system end the orthegonallty property. The method
of sciution is tedious, anrd the caleculations are prqctica}ly,imfoséible for
Rayleigh’s numbers greater than‘loé and aspect ratios greater than &. Th? re-

suits for Rayleigh’: oumber 10% and aspect ratic unity are shown in Fig. 1h.

There is an isothermal core having uniform temperature; there is zlso a con-
stznt vorticity in.the ccre. In the region between the ccre and the cavity
walls, the temperature and the .3tream function oscillate once near the core -

and then tend smooilLliy %o their appropriate vaines at the cavity wall. The

bohndary imyer is countinucus between the wall and the'core.r

>

Tighchil examined natural convection flows generated by large centrif-

ugal forces in a tube closei at one end and open at the other end to an

Ainfinite reservoir, where the tube walls are maintained &t a constant tem-

perature. Such a situation exists in cooling gas-turbine tlades. He pre-

dicted that one of the following three régimes may exist, depending upcn the

« protuct of Grashof ﬁumber and the ra&ius-to-length~ratlc of the tui-. The

t. Similarity flow. For small va..es of thle product, i e., for large

vélugs—of 1ehgth~to~faﬁiﬁs ratio for & given Grashof number, the boundar:;

-

veloped. Heé predicted that for this type of flow, the velocity and temperature

-distribution are similar at each section of the tube; cnly their scale is



Increasing as the orifice is approached. Assuming that the velocity and
emperature vary iinearly aiong the tube, he ccnecluded that there is an
asnect ratic for which the temperature changes from its velive at fhe orifice
w2 the valae at the bottom. Extending the tube beyoad the length determined
by the zbcve retic, e a&dditional leagth is filled with fluid at rest at
fhe‘wall‘s temperature.

2, Boundsar--lsyer tyoe of Tiow. For high values ¢f the product of
Graskof aumber an raéius-to~Length ratis, i.e., for short tubes, the flow

s of prundary-layer tyre. In the extreme case, wher the boundary layer

fiils a negliigzible pertio

3

of the tuve area, the flow gprroximates the free-

convection flcw up a flat p.ate.

for valués of engtk e fa a8 ratic which lie'betveen tns value; carrespond -

Cing io the first and tue third -ase. The boundary layefﬁfillsga iarge portion
of fbe fuheﬂsection. He 364 the 3guire technique to solve the first and the
third cases. -~ 7 ' -

.2 . . . . ,
Hemmitt” considered the case of a clusel vertical cylinder with internal

heat genera,ﬁod. He usec the “ighthill technique, medified to account for

the heat sources. The sg-eement tetween the calculated snd measured values
-f Nussett's aumbar-is act good. Thic is provatly due to some cf the inev-

itable asswmption: which are made: (1) smell inertia forces comparsd to

bioyaucy and shear, (2% reaial evtena ¥ ihe temperzture and veiocity boundary

layérs,is the éame, (5)-the boundary-layer approximations aepply. The first

-assumption ig velid for large Prandtl rumbarc' the second 1s valid for

-3



Prand%l numbers near unity. The disadvantage of this methcd »f soluticn is
that it is in capable of detailed examination of the end conditions.
" Following Lighthill, Ostrach and Thcrnton22 considered a geometrically
" similar case with a linear wall temperature. In Ostrach's paper, as well as
in Lighthill's paper, attention was given tc the stagnation of natursl con-
vection flows at the closed end. The same probiem considered by Lighthill

17

was solvad by Ievy, using integrzl methcds. He assume that the upward
"~ flow consists of a layer of thickness £ near the wall, the remaincer of the
tube being filled with cold fluid flowing downward. He assumes three regimes
of flow simiiar to those postulated by Lighthill. If the tube leggth is less
than or equal to a length I, the stagnat%on region does not exist and fhe |
upflow convective layer ircreases with x. For axial distance x > f5, &
régches a constant value d, and éuch a flow occurs for 2; < x < lp. For
x > P, there is a stagnation region at the cioseq section of the tube.
Rcmoncv;zs also using integral techniqués, solved the same prcblem con-
side?ed'ﬁy Lighthill_and Ievv., His calculations agree with those of Lighthill
for i:finite Prandtl mumber, buat they differ considerably for Prand?l numbers
neér unity. The measured and the calculated temperaﬁures-are‘in a good ggree-

ment for different wall temperstures.

B. EXPERIMENTAL STUDIES

4 large number of experimentsl studies have involved flat plates immersed

in an infinite fluid at rest_and either heated or cocled. In generasl, there

has been good agreement between theory andrexpérimentq ansiderable exper-

-



irental work has been done in the field of natural convection in tubes and
eacicsures. This werk bas ccncefned specialized'appiications and particular
configurations. Most of the experiments were in connection with cooling gas-
turbine blades and nuclear reactor applications. Although most, if not all,
of thess Mdéeriments are not applicable to this sfudy, they will be helpfvl
iﬁ indicating the general trend and the type of experimental equipment re-
quiredn

Probably the most comprehen-.ve experimental studies of natural con-
vecticre in thermosyphous-arz those conducted by Martinlg in an atfempt to
check the theoretical workiof Lighthill. His results agree qualitatively,
glthough the measured heat-transier coefficients are nearly twice as large
as those predicted by LighthillT The three regiﬁes predicted by Lighthill
vere identified from measurements of heat transfer rates. Tﬁe heat transfer
rate'was greatest for large values of theproduct of Grashef number and the
radiﬁs-to-length ra%iot_ The ;ate was highest at the bottom of thé tube,
which indicates that there is boundary-layer type cf flow. At small values
of the product, theheat iransfer varied linearly from the orifice to zerc at
the bottom of the tube, from which Martin concluded that there is a similarity
regime. A regilorn of instabilities, characterized by ncnsinusoldal oscillaﬁbry
flow, cccurred between the(above two steady regimes.

Siegel and Nor;issl shed some light on the osgillatoryrflcﬁ mentioned

J— = -

by Martin by exploring the air flow patterns ir the space between two heatel,
wide plates, closed at thg bottom, open at the top, and insulated at the sides.

t

For spacing of 0.28'of thé plate height, the flow pattern wes symmetvydc, with
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spward fliowing bourndary iayers near eaca plate surface and downflcw in be-

g)

~ween, Wher tne zpacing was reduced to 0-21 of the heignt, the flow pattern

tecame asymmetric, with nglf the cross section cccupied by upward {near one

n

o —

piate' and the 1all near the other plats occupled by downward {low. ior
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cidal reversal in -flow directiorn ard temperature fliluctuatlunz.

the sffscr of length-to-diametsr rstio <f c2losed end ccolant passages on
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They rszpcrted no sigaif-

1cant differsnce in the heat transfer for the Jdifferent. length-to-diameter

‘ratios irvestigated rarging from 3.1 tc 25.5:1 Fcr the largesti length-to-

~

diameter ratic, 25.5:1, the toundary layer filis 87% of the fike cross

sSeCt1l

(-

36

£

The visua. studies of Sparrcw ord Kauffman’> of free coavection of
water in a narrow vertical ecclesure, ~ooled at the tcp through a copper
surfaece and op=n atlthe bottom tc a heated reservoir, revealed that the

flow pattern is nct steady. No region of th: enélosure is permanently a
region of upflow or of dowaflow. The size of the wvarions upflow and dewsflow
regions varied along the length of the ernciosure at & given time. Tie num-
ber acd size of upflov and downflow regions also varied with time. However,
end effects were observed; and a contimucus downflow yook‘ﬁlace in‘a 3/h-

inch band adjacent to both walls. Generally, tte @omihating character of the

flow was instability,

PP
0,11,15

ha“tnevg, et ai., studled the free-convection heat transfer for

10



the gecmetry postulated by Lighthill, but with a constant heat flux a

ot
ot
-y
)

tube wall and ~ater and mercury as working fiuids. The effect of inclining

the tube was alszo investiga*ed. Temperature oscillations of the same naturs

s

&s those reported by Mariin and 3Siegel aid Norrie were cbserved.  Contrary to

~

the results reported by Curren and Zalabak, the heat transfer was considera-

o

bly infiuenced ty length-to-radius ratic. A decrease in :ength-to-radius

. . 3 . i . .
Skipper, et al., studies the natural-convecticn flcw pattern in viscous
-0il in rectangular tanks heated 'at the center by vertizzl coil heater. The

flow pattern consisted of a narrow chimney of hot oii rising vertically around

_and above the heater surface, and a horizontal layer of hot oil at the free

surface separated by a sharp vertical gradient Trom the remaining cold oil

belnw. . The hot oil layer had a small vertica

frmdd

temperature. gradient, with
maxiﬁumrtemperatufe at the tcp. T@e heot oili layer at the surface became
increasingly thiék with continueé reati. . The hot oil was found to flow

_downward at the walls of the tank, while there vere suggestibqs of cireulat-

ing currents at the side of the rising chimney. The flow pattern shown

suggests that a vortex was formed at the free surface nesr the center line

vwhere ti. - hoet rising chimney is bifurcated and spread horizontally along the
surfsece¢ FEichhorn observed similar vortices. These vorticles were formed .

at the free surface of water near the walls of a cylindrical tube 2 inches

diameter and H-inches long, uniformly heated at the walls ard open at the

s

top. .



Some of the literature pertaining to the prcblem at hand will be mea-

ticned later in this study whers its application is more important.

12



IIT. THFORETICAL ANALISIO

A. TFORMUTATION

1. - Statement and Physics of the Problem

A closed container is partially filled with a cryogenic iiguid. Ini-
tially the liquid and the vapor which fills the ullage volume &are assumed
to e in equilibrium at the temperature T,, the stauration temperatare cor-
responding to the iritial pressure P;. Previous tests indicate tha*t boil-
jing due to heat leaks from the ambient is a surfece phenomeron only: vapor
butble formation is confined to very near the. surface; the rest »~f the liguid
does not contain vespor bubbles, and a <mall change in the ull. ge pressure is
sulficient to rause bciling to ceasel}/ Trom this initial condi£ion, ﬁhe
wall of the vessel is assumed to vndergo a step change 1n-temperature or is
assumed to be subjected tc a uniform heat fiux. Simultaneousliy, the pressure
in the ullage volume is changed to Pg, whith may te eqﬁal to or greater than
Py. The measurements reported in Refs. 3 and 7 indicate that the interface
temperature rises very rapidly to Tg, the satufétion temperature correspond-
ing to the pressure Py in the ullage space for these conditions. Buoyant
forces, caused by density variations in the liquid, set up natural ccnvection
currents. The liquid-vapor system teuds to adjust to the new non-equilibrium
condition by transferring mass and energy across the interface. The éontfbll-

ing fector is the interface temperature, and each region transfers heat in-

dependently of the bulk temperature of the cther reglon. An imbalance of the

13
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=gt trgnsfsr =+ toe L_4 li-vapcr ioterfsce is counterbalanced by a phase
2ibhes _-anzient evepcoration or cordsnsaticn ccours at the
rterfa~2, In tils ans:ysis, tre problem is formulated in its general form,

ta4ing 130 consideration the interacticn between the i1iquid and tre vagper

pkasse., Ilater =nhe groblem is simplified. maging it tractadble fcr analysis
witzmout zericuziy impairing its usilicy.

Consider a rectangular two-dizensicnsl tank o7 widts 2a ana heignt k.

. - ané the depth of tne vepcr.is c. The

crigin of the ccordinate system is

taken at the middile of tha tark bostom

-

T T
) i ; R .
B E N : . with x positive in the directicn of ths
: ; c Ldquid ¢ :
- Kol . s 3
i } i i ) ligquid. The g-level is sufficiently
" 3 H - .
£ A X i P . . o "
s g h’gh so that the effect of surface ten-

5 ) : sion can ve neglected. The location of

|

S |

L~ y " the liquid-vepor. interface et any one
R s : .

{ . . . o

i . o time is giver by x = X{t). The two-

. dimensional transieut conditions will

be ccnsidered.

Tre differential eguaticns governing-nhé”velobity and temperature dis-

’

tribution in the liguid and vapor regions are:
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The momentum equations:

The x-mcmentum equation:

ou , du . ) _ _ %
at”ax*"ab)‘ c8

The v-momentum eqguatic=:

TN O N T
;<;t e x  dy) dy Bx[%(?i * 8;2]

) o 28 <5f§}] ‘
o Ll doZ0 _ g2 20 o
ayE‘{ay 50 v/l @)

The energy zquation:

tu— ¢+ v

St or BT>=§g 3 . P
) ot ox oy

3 (A, (A, .y |
t 5 “a;)+ay€a +ud (3)

where, ¢ = dissipation function (see Nomenclature)

The continulty equation:




Initial corditions:

1}

T(X)Y;O) Tg(X:Y;O) = To (5)

u(x,y,0, = viy,0) = wglxy,o) = vglxy0) = 0 (6)

poundary coaditions:
{a) Velocity boundary conditions.
Assuning the no-slip ccndition to prevail at the {ark walls, the follow-

ing boundary conditions are oSbiained:

u(o,y,t)- = ulx, £ a,t) = © (7)
v(o,y,t;) = vix, tat) = 0 (8)
ug,,t) = g/ Geot) (9)

ug-(x, tat) = vlx, #a,t) = vgley,t) = 0 : (10),

. Assuming zero chear stress at the liquid-vapor interfa~s, the interfacial

boundafy conditions could be stated as:

u®,y,t) = uXy,t) = o= (11)
d dvy ; \
s (Korst) = 2Kyt = 0 (12)

From the geometric symmetry of the configuration with respect to the y-



axis, it is zssumed that the y-component ¢f the velocity vector is zero at

Lthe axis of the tank and that the x-component of the wvelocity is an even func-

v(z,0,8) = 0 (13)
%(x,o,t; = 0 (1b)

{t) Thermal tourdary conditions.

The bottom and the upper surface of the tank are either insulated, sub-

-0

ected to & uniformr heat Tlux, or kKept at a2 constant temperature. The walls
£9

are either subjected to a uniform heat flux ur kept at a constant temperature.

Owing to symmetry, the Zemperature wiil te an even function of Y.

(1) T (x,0,t) = 58 (x,0,8) = 0 (15)
(2) s Zoyt) = Ze ) = o
ox ox
1 or = Oy = /A )
b. k== (o,y,t) = kg - <(h,y,t) = (¢/A)y
ey To,y,t) = Tglh,y,t) = Ty (16)
(5) - 8- K§_ﬂ: (X _,e_t) = k ér{l&(x ia’c) = (Q/A)
?Jyl y L% £ ay ) ’ W )
b. -T(x, * a,t) = Tglx, = a,t) = Ty (a7



(1) - a. T(X)Y;t) = /Tg(X)Y)t) = Tg

be -ag(b,y,t) - % (byy,t) = 0 (18)
3 S Ox

Any case considered in this work is a combination of the thermal boundary
condition, given by Eq. (15), and one of each of the cther thres boundéry con-
ditions given by 3gs. (1€), {17), and {18).

Applying the conservation of energy across the interface

hfg(dt> <§x {x, V;t) -k < (X:Yf (19)

In addition to the boundary conditi?ns sfated above, we have the equaﬁion
of state P = f(p,T) for the vapér region. Also? an overall energf and mass
. balance, considering the system composed of the vapor and liquid reglons, is
aﬁtOmatically satisfieé by sny exact sclution; it provides a means of checking
‘assumptions or simplifiéations.introduced later in this aﬁalysis° As another
check‘on the:solntion, the net rate of fluid flow across any section of the -

n& .
liquid tank is equal to_zero,'i,eo,k/ udy = C

3. Simplified Model

Due to the complexity of‘ihe problem, only the liquid region is considered,

for which a simplified model i3 adap‘c;eda In reality, the amount of evaporation
or condensation is small; therefore, theuiﬁterfacial displacement is neglected,
and the tnterface is assumed to be always at x = b, Thé pressure of the vapor

is considered to be constant;'conséquently the interféce temperature 1s con-

stgpt, Constadt fluid properties By Cp, k anG 0 are assumed. Density varia-

18
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~ions are allowed in the x-moméntum equation only. The pressure terms and
the dissipation function in the energy equation are neglected.

initially the pressure throuwghout the tank is the hydrostétic pressure.
The variations in pressure and density caused by the fluid motion and tem-
perature gradienta from initial values are expected to be sﬁall. Therefore

the following assumptions are introduced:

‘J
"

P, + P!

and
p = py tp

where P, is the initial hydrostatic pressure, P' the change in pressure from
the initial value, p, initial deunsity, and p* the change ir density.

Since the pressure variations are small, the density changes due to
pressure are negligiblé, and density variations are caused Qaihly by temper-

eture changes. Then p' can be 2losely approximated by
P = p-po = gy B(T,-T) , (22)

where B is the ccefficient of thermsl expansion.

Similarly,

ok &
N 5 " Po8t - _ (23)
- ® @ |
dy  dy (24)



Substituting the above expressions in the momentum equations:

Tne x-momentum:

/du du du JP! /% . d%u '
— b 1] — s— = - - 2
%t =Y 3y, Po B8(T-To) ox ¥ *kaxff ¥ By2) (25)
The y-momentwn;
v, 3, Yy L o, A o 6)
—at'“ax”ay)‘"ay+\ax2*ay2) (26)
The continuity equaticn:
& % - ¢ . - R C
The energy equation:
2 2 }
o, L, ;0T T - -
ot R dy O\Bxe * 8y2> (28)

The substitutions necessary to reduce tie above differential equations

to nondimensionalized fcrms are:

db a T,
u = -a‘—aU y ¥V = ; ¥
vaob a2
P-Ty = o t = — T
© Bga* ’ -
x = bX y, o= &a¥ (29)
20
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IS Substituting Eq. (29) in the differential equations, differentiating

the x-momentum equation with respect to y and the y-momentum egquaticn with

respect to x, combining the two equations, and introducing the stream func-

tion, the fcllowing equations are obtained:

d (a2 3% , 3%\, dwd % %y, 32
3\pZ X2 32/ By oX b2 B aY

- Pr L 2 3y | a%p
b

2 3x=2 b2 e ¥ 8Y2
and

0 , v N _ P
d1 aYox X Y

where the stream function ¥ is defined by

-l
Vs

v = - X

The initial conditions

e(x,Y,0)

¥(X%,Y,0)

and the bourilary conditions are:

]
O

¥
(o

aq: d +
S b2 ax2

2 azv
8Y2 b2 X2

. %
1 aY2

Q.

a%x

aye_J

\D_.

(29s)

(30)
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W(X)l)'r) = %(X;lﬂ') = %‘i‘{:(x)l;'r) = 0 (55)
W(O,Y,T) = %;’(O)Y)T) = %%(O)Y)T) = 0 (3}“')
2 2, -
vy = ZEann = 0y = o (35)
2, 52
¥Wxom) = Shxom = S0, = o (56)
2 ®% ) |
&(O)Y:T) = BY(X’O’T) = 0 (37)
g%(x,l,T) = Gr* , or
Q{Xyl)'r) = Qw - (38)
O(l;YsT) - = Qs ) O:F’ %(lJY)T) = 2 (39)
where: ‘ .
Gr* = (a/b)Pr gha (a/A), (kv°) (40)
0y = %(TS-TO)PI' gPa3/v2 = (a/b).Pr.Gr (41)

From the above system of equations ané boundary conditions, clearly U,

V, and © are functions of k,y,T, a/b, Pr, Gr, and Gr¥,

B. THE SOLUTION
The nonlinear, fourth order system of Eq. {29a) and (30) is nct amenable
| to mathematical treatment using classical methods. Furthermore, Ostromovgu

and. Batchelorl found that neither the successive approximation method nor the

~ series expansion is suitable for handling such a system of equations for any

22
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arbitrary Pr and Gr. Therefore it was decided to employ a numerical method
focr the sclution; the finite-difference approximation was chosen for the work
in this report. The advantage of this method over other'numerical methods is
that the boundary-iayer assumption is no longer necessary. Instead, the full
Havier-Stokes equations can be solved, The results obtained by this methocd
‘can be used to check the velidity of the simplifying assumptions made by

others.

C. FINITL-DIFFERENCE APPROXIMATIONS
The fourth order, noniinear system of Eq. (29a) and (30) is transformed
to a second order, nonlinear system as fcollows:

Tet

¥ . 9d
2 Y2y (k2)

Upon substitution in Eq. (29a), the following equation is obtained:

IR L P S B -l i i ,
e PraY+PrE328X2+BY2] (45)
& A3 2 .

R, yEL, v a~ 0% , 0%0 (44)

s VTV T e W

By definition, w is twice the negative of the vorticity, and Eq. (43) is
kaown as the vorticlty transport equation. For convenience U and V are sube-
stituted for OY/dY and - OY/JX. By this “ransformation, the system of Eq. (30) -

and (31) is reduced to three second-order, nonlinear equations which are

23



easier tg handle ty difference methods compared to the two nonlinear, fourth
order Egs. (29a) and (30).

The differential Egs. (42) (43), and (L4k4) are approximated by a system
of Jdifference equations. Each first order term in Eas. (43) and (L4l4) can be
expressed in forward, backward, or central differences. The choice of the
type of difference approximation ls Jetermined by whether implicit or ex-
plicit difference method is desired and by the stability requirenents, to be
discussed later. From the beginning of this analysis, explicit methods were
Telt to be more suiteble for handling Egs. (43) and (44), because the principal
interest is in transient phenomena for small physical.time° This implies thsat,
for better accuracy, small time steps should be used from the beginning of

>

computation. Desinberre” showed that explicit methods are supericr to implicit
methods as far as accuracy is concerned; he also found that the accuracy re-
quirement restricts the size of the time increment, in the case of impilcit
metnods, to values smaller than required by stability considerations. When
explicit methods are used, the nonlinear terms U(dw/dX), V(dw/dY), U{d0/3X),
and V{(30/dY) have to be approximated by forward difference when the sign of
the velocity is negative, and by backward difference when the velocity is
positiveo35 éentral differences are used if implicit schemes are desired.
Since the velocity components change sign in the domain ofinterest, four dif-
ferent sets of finite-difference equations are required, and the appfopriate
set of gquations at each location or nodal point is determined azcordingly.

The four sets of aifference equations corresponding to differential Egs. (43)

and (44) are:

2k
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' + -
V1,3V u Vi, gTMi-1,3 . v Yi,37vi,4-1
AT 1,4 AX 1,d AY

! , 2 - -
= Pr © lJJ-O l;J'l + Pr _a_ wl+l)3_2wi;<]+wl"l;u] + wl;J+1 QWJ—LJ Wl;J'a
LY 2 (ax)2 AY)= kASa)
b, iy » s . PR q . » 3 wmiey o .
S I U P U e £ S5 SO U e P
1,d 1,J
AT AX s AY
B £ W e W M0 9 N O 1 e W i P (46a)
(T2 (ay)2
(ii} U>0, V<0
W'y s-Wi s Wi -V s
.__J.-.zj___l.zi+u.._z____}_z.i+vw.._b___l_.__d
AT 1sd AX +5d AY

L & 2 . W W . s x4 =CWs s s
= Pr © 1,d © llJ'l‘ + Pr i_, W1+llj 2wl)§+wl'ln] + Wl)J+l 2w11J+wj'JJ‘ﬂ
u SN Ch W02 Jugn)
' P x s s ity .
9'4,37%,3 L 0,301,y S,a00)

AT trd 8X 1 AY

82 0441 §-205, 3¥65-1,3 , O1,4+1-204,4%01, -1
b2 (ax)2 (Ar)2 (46b)

o - - - e = - — - — -



(i11) T <92, Vv>0

i U i U PO €5 O s O v, Lagaan
At 1,6 AX i,d AY
B WPl VTS SO Lnlh/ £ WY e e 0 W0 SO W L B OO M Y9
LY (32 (Ane (ay)2
(45¢)
c\'izj'gi!j + Y 91+1!3'Gl_z_l £V, Oi‘! i7%i, -1
- AT s AX i,d AY
8% 9541,57%1, %051, , 91,9917 %0, 51 (46¢)
b2 (a%)2 (ay,2 -
(iv¥) Ugo, V<0
‘ —
Vi,V E b . 1+]_ZJ Vi,d + v Vi, 31T, g
AT 1,4 AX ) AY
. -2 F 1
= Pr i j-g 1 + Pr f'_ wl+l J ?vl);-"w 'l)J + )J+l 2‘”11%. leJ"
AY 2 (aX) (aY) _g
' 45¢)
O's =0: - 0 =G 0; 143-95
. 5 —2d L,d Ly, itl,J775,3 & Vi3 e T e P
AT 1yd AX ’¢ AY
_ 889141 3730 %0515, Qi L 3¥179% 3194 3l (16a)
b2 (ax)2 - (ay)2
26
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The prime refers to the value cf the variables at the present time step,
axd the unpfimed variatle. correspend to those at the previous time step.

The two-dimensional space domsin of interest is bounded by C £ X £ 1,
-L LY < 1. Oniy the region to the righﬁ of the x-axis 1s considered because
ctf geometriéal symnetry with respect to this axis. The integers i and J de-
note the x and y positicn respectively, with i = 2, J = 2 as the origin,

¥ = (i-2), sax and Y = (3-2).

D. STABILITY AWD CONVERGENCE

Tne methbd used in this secticn follows that cf Refs. 27 and 12. The
theoretical backrround for the method ray be founé in Ref. 27, which presents
an exdélleﬁt discission of the subject.

Stability is a necessary condition for the solution of the difference
equations to converge to the solution of the differential equationé as the
size of theiincrements Ax, Ay, and At tend to zerc. In other words, ituis
important to identify the behavior 5f the approximation error as the size of
the increments goes to zerc and to establish the restrictions to be imposed
on the difference eguations in order thatithe error will tend to zero as the

increments Ax, Ay, end At go to zero. This requires that there be no un-

limited amplificaticn of the error as the computing cycles become infinite

‘in the limit.

The Von Neumann method of stability analysis is used in this problem.
This method is strictly valid for constant-coefficient cifference ecuations

wﬁflexfhe equations involved have variable coefficients U and V; however,

27
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very good approximation for the stabllity criterion is obtain=d by treating
the variable ccefficients as constants throughout the analysis and then le*-
ting the variable coefficients take on their most adverse values in determia-
ing the restriction on the time increment size. The fundamentals of the ar-
lecatlon of this method of stability analysis are best illustrated by the
problem in hand. The methed will be applied for the case U >0, V> 0. The
stability criterion holds irrespective of the sign of U or V. The absolute
value of U and V mist be used in the equations cor inequalities describing

the stability critericn, and the appropriazte difference equations must be
used according to the sign of U and V, as described earlier.

The solution of the &ifference equations can be written as a Fourier

series, the form of ﬁhiéh is:27
(n) (n i(K1X+KgY)
w ol = 3 e L
i,3 L L. (47)
K; Ko
n : n) i(KiX+KoY
g.()_= Xp()e(l oY) (148)
i,d
Kl K2 -

-where K; and Ko are integers, n is a superscript denoting the nth time veriod,

and & and p are functions of K; and Kp. Substituting the system of E3s. (&7)

and (48) into Egs. (45a) and (46a), the following equations are obtained after

some ‘algebraic manipulations:

28
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1 — r \ 0 3 . _ 4% 7.
> \ g.fl"’l}_ F( /él'*‘az e iK X . o iKoAY aq e_..l(]_AX ¥ as eiz{gAY)
[
1 Xz

+ ag “(n+liJ81(KlK+K2Y) - 0
< +1 Y/ ~i¥.AX SiK LAY iK- .
ZZ F(f} ) u(n,eﬁcg SIS QUG SN S L S S emamD

s [vr b2 \
IAK X+ oY
e eJ-\ 1 2+,

From the above equations, it is concluded that the difference equations are

satisfied if

g(n-rl) _ §(n) natan e-iK;_AXV ‘ag e-iKgAY + a eiKgAY + as eiKaAY)+ .
(19)
and
“(nﬂ) _ “(n)cc e o-IKAX es o iK2BY s eiKySX ‘es ei%gAX> ,
where: . )
ay = 1 - {2 %; (i;)?_+ 2 (§§)2 + Iuikil + 'Vi%i[) AT

(a2 Pr . U ﬂ)
- St A
2 T\ T ST

I

IViLiI AT

a TPr
® \(aY)Z AY
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No definition has been given to ag since it has no effect on this analysis.

- The system of Eqs.p(MQ) and (50) are of the form:

g (1)

{n+1)
n

1§

il

In the matrix notation,

G CXD

(nP

(n+

{
™y ks

)

s

+ajo

{n), . '
azy &' (K1,K2) +azo

A
n
"(X1,K2)

(n) (KI)K2)-

the above equalities can be written as

(51)

(52)

(53
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The guantity between the first parentheses on the right-hand side of Eq. (53%)

is called the amplification matrix. The Von Neumann condition necessary for

i
—

stability is: lx maxl < 1, where N pax is the largest eigenvalue of the am-

plification matrix. The eigenvalues are given by

a11-h aip

api azz-N

Substituting the velues of ajii, @2in,...etc. in the above determinant

ané solving for A, we get

N -. Y _ '. s T, .
N = aj +ase iK;4AY + a3 e iKgAY + a4 elKlﬁx + as elx(gAY (5,_‘)

Mo == cC1 t* Cp o 118X c3 e 1K2AY Ca 128X cs o K28t (55)

The coefficients aj, as,...,c3,02..-€tc. all are positive except a, and cz,
which may be positive or negative. The largest absolute Yalues of Ay and kge
occur when all the terms in Egs. (54) ané (55) are real, i.e., when KjaX |

K1AX = KpAY = 2x then,

i

N1 max ay tap +tag +ag t+as (56)

cy tcptceg teoyg tesg (57)

1l

*2 pax.

Substituting the values of aj, &z, C1yeee,C5 in N mex

H
[
~~
5
xR
~

Mopax = Mpax < b

31 |




Therefore, we can conclude that N .. will not exceed unity and will not im-
pose any stability resirictions. If thererbe any restricticons, they are to
prevent the minimum value of N from becoming less than -1,

The minimum of the eigenvalues occurs when KjAX = KoAY = 1t and is given

by

N1 = @) - 8z - 33 - 84 - 85
min

)\2min= iy - Cop -~ C3 - C4 - Cg

or

d .2
a. Pr Us s} (Vi 4l
= 1-2at(epP +2 + + il g
min . T(‘ TQ) AX) (8Y)2 AX | AY (59)
) P24 T, N AT A .!

min AX LY

Therefore, for |N| < 1, the foliowing ineq.aliiles shruld be satisfied:

2 . . PR
A 2z — 2 + lgl+ii + lii&a€> <1 (61a)
p2(ax)2  (aY)2 AX AY J -

(AY)

o
s s .
m@ PrQaMD + 2 AL +-’—“TJE;(JL—+H"*A—§J—!>§1 (61t)

Equations (6la,b) are requisite for stability. For values of Prandtl
number less than unity, inequality Eq. (6la) is more restrictive and, there-
fore, should be used. For higher values of Prandtl number, inequality Eq.(61b)

must be used.
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The numerical sclution is carried as follows:

1. The temperature distribution is first calculated using Eq. (hS);

advanced values of temperature ©' are used in Eq. (46) to cal-

3. The stream function is caliculated at each time step, using Eq. {L2).

The solution cf Eq. (!

Xa)
TC

) is done numerically, using successive row relaxation

followed Yy successive column rélaxation.3
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IV. RESULTS

Calculations have been carried cut for the case of a containe: with an
insulated bottom whose walls are subjected to a uniform heat flux, and tne
liguid surface is maintained either at the initial temperature To, at a tem-
perature, Ty, higher than T,, or is adiabatic. The last case is expected to
approximate the transient convection in the liguid when exposed to a ron-
pressurized gas. Different leveis of heat flux were considered, including
10 and 1000 Btu/hr/ft2.

For these calculations, the fluid properties chosen were those ~f liguid
nitrogen initially at atmospheric pressure, the initial saturation tempera-
ture was 140°R. The fluid properties were evaluated at a temperature equal
to the average of the.initial vemperature and the liquid surface ﬁémperature.

The values of the liquid properties were taken from Ref. 38 and are summarized

in Table I." The height of the liquid b, is 1 ft, end the width of the con-

TABIE I

FLUID PROPERTIES

Thermal diffusivity @, ft°/sec = 8.62 x 10;7
Thermal conductivity X, Btu/hr/ft3-°R 0.0775
Kinematic viscosity v, ft2/sec ' 1.68 x 107°
Coefficient of thermsl expansion, B, °R™* L33 x'lO"?
Prandcl number | | 1.91

C SRR T [E—v————



et S S P i e s e S it 7 N RS ™ o ST i ¢ e T
P e

tainer is 1/2 ft.

The flow pattern for the case of a constant wall heat flux of 10
Btu/hr/ft2 and iquid surface maintained ut initial temperature T, is shown
in Figs. 1, 2 aad 3, using a 21 x <1 grid correspending to AX = AY = 0.05.
These results show the strcamline pattern at different time levels—50 sec,
2 min, and 3.6 min respectively. An interesting streamline pattern is ob-
served at the free surface. For a short time after the beginning of heat-
ing, the boundary layer rising along the container walls turns smoothly
changing its directicn frcm upward to dewnward flow (Fig. 1). The downward-
moving particles near the rising boundary layer reverse direction and join

the upward flow, thus giving rise tc the vortex near the free surface. The

- fluid away from the edge of the boundary layer flows nearly to the bottom

of the container, where it joins the upward-moving fluid. TFor greater times
following the introduction of the transient, the streamlines rear the free
surface show the presence of fluid oscillations (Figs. £ and 3). These os-

ciliations first form near the wall, their amplitude grows with time, and

'they move towards the centerline of the container. The calculations show

that this oscillatory phenomenon is reveated with time in the sequence de-
scribed (Figs. 2,3,4, and 5).

The effect of increasing the level of heat flux on the flow pattern is

clearly shuwn in Fig. b, which shows the flow pattern obtained after heating

for 51 sec with a wall flux of 1000 Btu/hr/ft? and the surface temperature
maintained at the initial temperature T,. The comparison between Figs; 1 and

L, which correspond essentially to the same time, shows that the oscillatory
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streamline pattern Jdevelops earlier for high heating rates than the low
heating rates. Except for the latter effect, the flow pattern at the higher
heating rates has the same characteristics as that for the low heating rate.
The magnitude of the velocities, of course, is higher for the higher heat
flux.

The streamlines for the case of a constant wall heat flux of 1000
Btu/hr/ft® and adiabatic interface are shown in Fig. 7.

Figures 8 and 9 show the streamlines and the isothermals, respectively,
obtained at 1000 Btu/hr/ft2 wall heat.flux and the interface temperature
maintained at 160°R, which corresponds to the saturation temperature for e
pressure of 45 psia. The axial temperature gradient in the boundary layer
is negligible for about 70 percent of the container height at a time of 48
sec. At the upper portica of the ccntainer, near the free surface, the axici
temperalure gradients are considerably greater. On the other hand, the
transversal temperature gradient is greater at the lower portion of the tank
and becomes smaller near the free surface. Thertemperature distribution ex-

i hibits the same‘character in all the cases analyzed. These phenomena can be
explained as follows: for small times, the fluid near the container walls
flows upward in a thin boundary layer. In its upward movement, fhe hot fluid
entfains some of the cold fluid st the edge of the boundary layer. This
heated boundary layer is discharged at and just below the free surface, whers
its transverse velocity‘is highest. To satisfy continuity, the heated rluid
which is discharged at the free surface causes the colder fluid {10 muve down-

ward, thus producing a series of horizontel isotherms. With time these

36
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isotherms penetrate further beiow the free surface. At the lower portion of
the container, the transverzal temperature gradient is very high near the
wall and negligivle in the remsinder of the container. It is smaller near
the free surface, where the btoundary-layer flow is disckarged. The thermal

boundary layer fills the entire cross section in this region.

4. THE EFFECT OF GRID SIZE

Calculations were made fcor the ~ase of constant wall heat flux of lb
Btu/hr/ft2 with the fluid surface at its initial temperature, using 21 x 2i,
16 x 16 and 11 x il gridz. The streamline ypatterns are shown in Figs. 1-4,

6. The oscillatory pattern is obtained in each case, but it is on a smaller
scale for the 11 x 11 grid. The axisl velécity distribution obtained at a
given time is plotted for various axial positions in Fig. 10. The values ob-
tained using i6 x 16 and 21 x 21 are in close agreement. Figure 10 shows that
the difference between the values cbtéined using different grids is greater
near the wall and at the center line; otherwise they are in substantial agree-
ment .

Figure 11 shows the dimensionless wall temperature st a location x = .6
plotted against dimensicnless time. The deviationgis gre. - est for small times.
The difference decreases with time ard is practically negligitle for dimen-
sionless time of 0.003, which corresponds to zbecut 3.6 min.

Figure 12 presents the veloeity at different locations as a fuaction
of the grid size. Exemina*iun of this figure reveals that the velocities

change monotonously with the grvid size. Tneir values are expected to converge
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to the true soluticn for a number of divisions of the order of 30 x 30. This
is seen from the extrrpolation shown as dotted lines in the figures. The
rate of convergence is slower near the boundaryv and at the center than at in-
termediate positiong.

The computations were done on the IBM 7030 digital computer at the Com-
suting Center of Tra University of Michigan. The machine time required to
complete the calculations and tc print the results for U,V,T,w, and ¥ every
20 steps is 1.7 sec per time step for the 11 x 11 grid. The corresponding
times for the 16 x 16 and the 21 x 21 érids are 8 and 11 sec, respectively,

for printing the resulits every five steps.

- B. COMPARISON WITH FXPSRIMENT

An investigation of the literature on natural convection showed taat
few present rasul’s are applicablz to those reported here. These include
the work of Elchhorn and S. X. Fenster, et gi.,T there is cther literature

concerning flow phenomena in free convection, but, except those cited, none

F

Eichhern conducted visual studies of the natural convection laminar flow

of vater using an electricar,v heated cylinder 2-inches diameter and S-inches

‘long. His results are showvn in Fig. 13. The magnitude of the heat flux was

not given. From the discussion it is concluded that the results reprerent

the unstealy stote. Figures 13a and 1%b show the flow péttern observed at
high heating -.te, Fig. 13c¢ shows that obtained at low heating races. At low

hzating rates, the streamiines assume a damped-wave shape. At high heating
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rates, annular vortices repeatedly form near tbe free surface; rols up w.til
a certain size is reached, whereupon they move away Trom the cylinder, and
anotﬁer vertex vegins to fo?m. The compariscs. of Figs. 1-8 with the resulits
of Fig. 13 shows that the shape ¢f streamlines cobserved agrees with that ob-
tained from the theoretical sclutions presented here.

Fenster, e. al., studied experimentally the transient phenomena associ-
atec with the pressurizaticn of iiquid nilrogen initially boiling at constant
neat flux. Althoughrthe initial temperature distributicn agrees with that
assumed in this analysis, the initial velocity distributicon does not. At any
instant after pressurization, there was nc difference betwcca the tempersiure
at tne tank centerline and midway between the centeriine and the wall at an
axial location below 0.6 of the l;quid height. These results indicate that
the isotherms are horizontal in the core of the tank, which agrees with the
calculated isotherms shown in Fig. 9.

Temperature oécillations pf'the type shown in Fig. 9 were alsc obtained
by Popt326 for the steady state sciution of the temperature distributior. in
a two-dimensional c%pged cavify; In this case, the walls are kept at a con-
ctant -temperature, cne well hotter than the other, and the upper and lover

surfaces assume a linear temperature distribution. These results are shown

in Fig. 1lh.
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Y. CONCLUSIONS

The equations describing the transient, two-dimensicnal, laminar, nefural

convection in a rectangular closed container havi:ig a vapor-liquid interface

have been solved using explicit finite-diiference approximations. The velocity

and temperature distritutions indicate that, for small time periods, the fiovw

is of a Loundary-lsyer —ype, except near the botiom and the ligquid-vapor inter-
y J v 2 F Ay

face. No indicatiorns o numerical instability were encountered. The size of

the time increment was restricted to small values by staﬁility considerations

I
based on the method of Von Neumann. However, a smalil time increment is de-

sirable in order to obta.n accurate Lransient resulis at small time. On the i

other hand, if steady cstate results are desired, the number of computations
using the explizit method will be large for fine grids and for systems having

a high heat flwi. The machine time may be of the order of 2 hours in this

12
case, “ and the use of implicit methods would be superior. Hcwever, the ap-

plication of implicit-cifference methods to this problem and *to problens with

other geometry is being continued.

The results obtained using the present method agree qualitatively with

related cases reported in the literature.
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APPENDIX

COMPUTER PROGRAM

The ~omputer program used for the cases of constant wall flux or constant

step change in wall temperature and the interfacial temperature specified is
P ! P

given on the foullouwing psges. The program is written in MAD language. The

symbcls U,V,T,W,T.,T.,k,5, and B are the same as in the text. The meaning

Dx

Ax

|
|
i
!
3 of the principal symbecls which are nct defined in the program.are given below:
i

Dy

DT

M

%

o]
3

Bt it e+ et e ot e Eie i s reanpie e

NE

TJT

TT

e S

!A_(

I3

oy

AT

No. of d4ivisicns in the x-direction

No. of divisions in the y-direction

Acceleration due to gravity

Stream function »
The value of the stream function at the previous time step
The value of W a% the previcus time step

The value of W at the advanced time step

The value of temperature at the previous time step
Total numher.;f time steps

Numbzr of interations

Dimensionless wall temperature Ty, for the case of step change in
wall temperature .

Dimensioniess interfacial temperature.

by

,
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